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1. Crystal Structure and X-ray scattering 
1.1. (2p) How to form a crystal using the concepts of lattice and a basis? 

Answer: 
• Basis – group of atoms, which being periodically repeated, will recover all 

the crystal.  
• Lattice – is a mathematical construction defining the position of this group 

in space.  
To form a crystal one needs to put a basis in each lattice point.  

1.2. (3p) There are 3 space lattices of cubic type. Name and sketch them  
(rough sketches without using rulers are acceptable). 
Answer: 
Simple cubic Face centered cubic Base centered cubic 

   

�
𝒂𝒂1 = (100) × 𝑎𝑎
𝒂𝒂2 = (010) × 𝑎𝑎
𝒂𝒂3 = (001) × 𝑎𝑎

 

⎩
⎪
⎨

⎪
⎧𝒂𝒂1 = (

1
2 

1
2 −

1
2) × 𝑎𝑎

𝒂𝒂2 = (−
1
2 

1
2

1
2) × 𝑎𝑎

𝒂𝒂3 = (
1
2 −

1
2

1
2) × 𝑎𝑎

 

⎩
⎪
⎨

⎪
⎧𝒂𝒂1 = (0 

1
2

1
2) × 𝑎𝑎

𝒂𝒂2 = (
1
2 0

1
2) × 𝑎𝑎

𝒂𝒂3 = (
1
2

1
2 0) × 𝑎𝑎

 

 

1.3. (6p) a) Define the NaCl lattice type and b) coordinates of its basis in terms 
of 𝒓𝒓𝒋𝒋 =  𝑥𝑥𝑗𝑗𝒂𝒂𝟏𝟏 + 𝑦𝑦𝑗𝑗𝒂𝒂𝟐𝟐 + 𝑧𝑧𝑗𝑗𝒂𝒂𝟑𝟑 , where the 𝒂𝒂𝑖𝑖  are vectors in the Cartesian 
coordinate system. c) What is the maximal packing fraction for this lattice 
type (considering all the atoms to be of the same radius)? d) What are 
Miller's indices of the most densely packed plane? 
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Answer: 
a) Once one defines a  basis  , which is a repetitive atomic group, it becomes 

visible that the basises lay in lattice points of fcc. 
(1p) 
b) Basis of NaCl consist of 2 atoms, 1 Na (in 
the vertex) and 1Cl (in the half side) atoms. It`s 
asked to give coordinates of atoms of a basis in 
Cartesian coordinate system, meaning in 
orthogonal one. The conventional lattice vectors 

can be chosen as 𝒂𝒂1,𝒂𝒂2,𝒂𝒂3. �
𝒂𝒂1 = (100) × 𝑎𝑎
𝒂𝒂2 = (010) × 𝑎𝑎
𝒂𝒂3 = (001) × 𝑎𝑎

  ; 

𝒓𝒓𝒋𝒋 =  𝑥𝑥𝑗𝑗𝒂𝒂𝟏𝟏 + 𝑦𝑦𝑗𝑗𝒂𝒂𝟐𝟐 + 𝑧𝑧𝑗𝑗𝒂𝒂𝟑𝟑   �
𝒓𝒓𝑁𝑁𝑁𝑁 =  0 ∙ 𝒂𝒂1 + 0 ∙ 𝒂𝒂2 + 0 ∙ 𝒂𝒂3

𝒓𝒓𝐶𝐶𝐶𝐶 =  
1
2 ∙ 𝒂𝒂1 + 0 ∙ 𝒂𝒂2 + 0 ∙ 𝒂𝒂3

; 

(1p) 
c) In fcc the closest atoms are laying on the face diagonal, means, if r is the 

radius of the atom,  4𝑟𝑟 = a√2, then 
 

𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓 =
𝑁𝑁𝑉𝑉𝑁𝑁
𝑉𝑉𝑓𝑓𝑐𝑐𝐶𝐶𝐶𝐶

=  
𝑉𝑉𝑁𝑁(1

8 ∙ 8 +  1
2 ∙ 6)

𝑎𝑎3
;  𝑉𝑉𝑁𝑁 =

4
3
𝜋𝜋𝑟𝑟3;   𝑝𝑝𝑓𝑓𝑓𝑓𝑓𝑓 =  

4
3𝜋𝜋𝑟𝑟

3

(4𝑟𝑟
√2

)3
=  
𝜋𝜋√2

6
= 73% 

(2p) 

d) Compare 3 planes of fcc: (100), (110), (111). 

 (100) (110) (111) 

 

   

N 4 ∗
1
4 + 1 = 2 2 ∗

1
2 + 4 ∗

1
4 = 2 3 ∗

1
2 + 3 ∗

1
6 = 2 

Figure 1. NaCl crystal structure 

Na 

Cl 

vertex face 
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A 𝑎𝑎2 𝑎𝑎 ∗ 𝑎𝑎√2 = 𝑎𝑎2√2 𝑎𝑎√2 ∗ 𝑎𝑎√2 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠60°
2

=
𝑎𝑎2√3

2
 

𝑝𝑝𝑓𝑓𝑓𝑓 2atoms/𝑎𝑎2 √2/𝑎𝑎2 =
1.4𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠/𝑎𝑎2 

4
√3

/𝑎𝑎2 = 2.31𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑠𝑠/𝑎𝑎2 

(111) plane is the most densely packed plane.  

(2p) 

 

1.4. (5p) Briefly discuss the Bragg diffraction. What is the requirement for the 
wavelength of the radiation to be diffracted on a crystal? 
Answer: 

 

Path difference between 1`and 2`is: 
𝛥𝛥 = 𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑄𝑄 

𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑄𝑄 = 2 ∗ 𝑑𝑑ℎ𝑘𝑘𝐶𝐶 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 
constructive interference of 1`and 2`is 
possible, if this path difference is 
equal to any integer value of the 
wavelength: 

𝛥𝛥 = 𝑠𝑠𝜆𝜆,𝑠𝑠 = 1,2 … 
Thus the Braggs law is: 

2𝑑𝑑ℎ𝑘𝑘𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 = 𝑠𝑠𝜆𝜆 

So the requirement for a wavelength is: λ ~ dhkl ~ a 

If the formula is not mentioned, but the discussion is correct, one gets 3p 
 

1.5. (10p) Determine the structural factor of the FCC lattice of KCl. 
If the atomic form factors of both K and Cl are the same, one will obtain 
the x-ray diffraction pattern similar to simple cubic. Explain why. 
The structural factor is given by: 

𝑆𝑆𝐺𝐺 = �𝑒𝑒−𝑖𝑖𝑮𝑮𝒓𝒓𝒋𝒋 �𝑑𝑑𝑉𝑉 𝑠𝑠𝑗𝑗(𝝆𝝆) 𝑒𝑒−𝑖𝑖𝑮𝑮𝝆𝝆
𝑗𝑗

. 

Answer: 
One can consider KCl as 2 fcc monoatomic lattices (one for K and other 
for Cl), shifted by (1

2
1
2
1
2
) relatively to each other.  

There are 4 atoms in conventional fcc cell. 1 in the vertex and 3 on faces. 
If the K atom will be taken as the origin, coordinates 𝑟𝑟𝑗𝑗  of K atoms in 

a 
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convencional fcc lattice will be:  (000), (1
2
1
2

0), (1
2

0 1
2
), (0 1

2
1
2
), so the 1st term 

in structural factor will be:  

𝑆𝑆𝐺𝐺,𝐾𝐾 = �𝑒𝑒−𝑖𝑖𝑮𝑮𝒓𝒓𝒋𝒋,𝑲𝑲
𝑗𝑗,𝐾𝐾

𝑓𝑓𝑗𝑗,𝐾𝐾

= 𝑓𝑓𝐾𝐾 ∙ �𝑒𝑒−𝑖𝑖𝑮𝑮(𝟎𝟎,𝟎𝟎,𝟎𝟎) + 𝑒𝑒−𝑖𝑖𝑮𝑮�
1
2,12,0� + 𝑒𝑒−𝑖𝑖𝑮𝑮�

1
2,0,12� + 𝑒𝑒−𝑖𝑖𝑮𝑮�0,12,12�� ; 

 
𝐺𝐺 = ℎ𝒃𝒃1 + 𝑘𝑘𝒃𝒃2 + 𝑙𝑙𝒃𝒃3;𝒃𝒃𝑖𝑖 ∙ 𝒂𝒂𝑗𝑗 = 2𝜋𝜋𝛿𝛿𝑖𝑖𝑗𝑗 

 

𝑓𝑓𝐾𝐾 ∙ �𝑒𝑒−𝑖𝑖(ℎ𝑏𝑏1,𝑘𝑘𝑏𝑏2,𝐶𝐶𝑏𝑏3)(𝟎𝟎,𝟎𝟎,𝟎𝟎) + 𝑒𝑒−𝑖𝑖(ℎ𝑏𝑏1,𝑘𝑘𝑏𝑏2,𝐶𝐶𝑏𝑏3)�12,12,0� + 𝑒𝑒−𝑖𝑖(ℎ𝑏𝑏1,𝑘𝑘𝑏𝑏2,𝐶𝐶𝑏𝑏3)�12,0,12�

+ 𝑒𝑒−𝑖𝑖(ℎ𝑏𝑏1,𝑘𝑘𝑏𝑏2,𝐶𝐶𝑏𝑏3)�0,12,12��

=  𝑓𝑓𝐾𝐾 ∙ �1 + 𝑒𝑒−𝑖𝑖𝜋𝜋(ℎ+𝑘𝑘) + 𝑒𝑒−𝑖𝑖(ℎ+𝐶𝐶) + 𝑒𝑒−𝑖𝑖(𝑘𝑘+𝐶𝐶)� = 

=

⎩
⎨

⎧
4𝑓𝑓𝐾𝐾  ,   ℎ, 𝑘𝑘, 𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠
4𝑓𝑓𝐾𝐾       ℎ,𝑘𝑘, 𝑙𝑙 𝑎𝑎𝑑𝑑𝑑𝑑
0,   2 𝑎𝑎𝑑𝑑𝑑𝑑 1 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠
0,   1 𝑎𝑎𝑑𝑑𝑑𝑑 2 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠

; 

 
The 2nd term in structural factor, associated with Cl fcc sublattice, will be 
the same but multiplied by 𝑒𝑒−𝑖𝑖𝝅𝝅(ℎ+𝑘𝑘+𝐶𝐶):  
 

𝑆𝑆𝐺𝐺,𝐶𝐶𝐶𝐶 = 𝑓𝑓𝐶𝐶𝐶𝐶 ∙ 𝑒𝑒−𝑖𝑖𝝅𝝅(ℎ+𝑘𝑘+𝐶𝐶) ∙ �1 + 𝑒𝑒−𝑖𝑖𝜋𝜋(ℎ+𝑘𝑘) + 𝑒𝑒−𝑖𝑖(ℎ+𝐶𝐶) + 𝑒𝑒−𝑖𝑖(𝑘𝑘+𝐶𝐶)� = 

=

⎩
⎨

⎧
4𝑓𝑓𝐶𝐶𝐶𝐶  ,   ℎ, 𝑘𝑘, 𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠
−4𝑓𝑓𝐶𝐶𝐶𝐶       ℎ, 𝑘𝑘, 𝑙𝑙 𝑎𝑎𝑑𝑑𝑑𝑑

0,   2 𝑎𝑎𝑑𝑑𝑑𝑑 1 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠
0,   1 𝑎𝑎𝑑𝑑𝑑𝑑 2 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠

; 

Finally, 𝑆𝑆𝐺𝐺 = �
4(𝑓𝑓𝐾𝐾 + 𝑓𝑓𝐶𝐶𝐶𝐶), ℎ,𝑘𝑘, 𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠  
4(𝑓𝑓𝐾𝐾 − 𝑓𝑓𝐶𝐶𝐶𝐶),   ℎ,𝑘𝑘, 𝑙𝑙 𝑎𝑎𝑑𝑑𝑑𝑑 , and one will obtain 2 sets of 

X-ray diffraction peaks, higher peaks with intensity ~ (𝑓𝑓𝐾𝐾 + 𝑓𝑓𝐶𝐶𝐶𝐶)2 for 
planes with all even indices and lower peaks with intensity ~ (𝑓𝑓𝐾𝐾 − 𝑓𝑓𝐶𝐶𝐶𝐶)2 
for  with planes all odd indices. 

If 𝑓𝑓𝐾𝐾 = 𝑓𝑓𝐶𝐶𝐶𝐶, 𝑆𝑆𝐺𝐺 = �8𝑓𝑓, ℎ,𝑘𝑘, 𝑙𝑙 𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠  
0, ℎ, 𝑘𝑘, 𝑙𝑙 𝑎𝑎𝑑𝑑𝑑𝑑 , then the X-ray diffraction pattern 

will contain only peaks with all even indices, which is equivalent to the 
pattern of SC X-ray diffraction, but for a lattice constant 2 times smaller. 

End of an answer 
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Sample X-ray diffraction patterns: 

 

If 𝑓𝑓𝑖𝑖 > 𝑓𝑓𝑗𝑗 If 𝑓𝑓𝑖𝑖 = 𝑓𝑓𝑗𝑗 SC 

 
 

 

 
 

 
2. Phonons and Electrons 

2.1. (4p) Write down the Newtonian equation of a 1D chain made of 
monoatomic harmonic oscillators. 

Answer: 
If 𝑀𝑀 is mass of an oscillator, 𝐶𝐶 is a force constant and 𝑢𝑢𝑖𝑖 is a displacement 
of 𝑠𝑠𝑡𝑡ℎoscillator, the Newtonian eq. is:  
𝑀𝑀𝑢𝑢𝚤𝚤̈ = 𝐶𝐶(𝑢𝑢𝑖𝑖+1 + 𝑢𝑢𝑖𝑖−1 − 2𝑢𝑢𝑖𝑖)  
 

2.2. (4p) Discuss what will happen if there are two types of atoms. Sketch the 
dispersion relation for phonons in this chain. Discuss the interaction of 
such a lattice with visible light. 

Answer: 
In a monoatomic chain, all the masses are the same, so they will response 
identically to the perturbation. When the masses differ from each other, the 
response is different and eventually there will be a situation, when heavier, 
more inert atoms, are still moving in the initial direction, while lighter are 
already moving backwards, creating a mode, in which atoms with different 
masses are oscillating in opposite directions. Thus in dispersion relation, one 
will have to branches, lower one corresponding to a case, when all the atoms 
are moving in the same direction (acoustic branch) and the upper one for the 
case of opposite direction movement (optical branch). 
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2.3. Consider a 3D simple cubic lattice of a metal. 

2.3.1. (9p) Determine the phononic heat capacity, at low temperature, in 
Debye approximation if the dispersion relation is assumed to be: 
 𝜔𝜔 = 𝑒𝑒𝑠𝑠|𝒌𝒌|. 
(Hint: use formulas (5,6) or (7)) 

Answer: 
We start from the definition of a heat capacity: 𝐶𝐶𝑣𝑣 = (𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
)𝑣𝑣. As this is a 

derivative of a total energy of a lattice, we need to obtain this energy. We 
know that lattice vibrations can be represented as independent quantum 
oscillators, means the total energy will be the energy of an ensemble of 
quantum oscillators: 𝑈𝑈 = ∑ ∑ ℏ𝜔𝜔𝑘𝑘(〈𝑠𝑠𝑘𝑘〉 + 1

2
)𝑝𝑝𝑘𝑘 , where first sum is over 

all possible wavevectors and second is a sum for all polarizations. We can 
turn this sum to the integral, using following: ∑ ∙ ∆𝑘𝑘 =  ∫ 𝑑𝑑3𝑘𝑘𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
→𝑘𝑘 , 

which simply means summing all the primitive volumes  ∆𝑘𝑘 . And the 
summation over 𝑝𝑝 gives us a factor of 3, 〈𝑠𝑠𝑘𝑘〉 – is an average number of 
phonons with a wavevector 𝑘𝑘 (there is different number of phonons with 
different 𝑘𝑘, and this relation of how many oscillators one has per unit value 
of 𝑘𝑘 is given by density of states, 𝐷𝐷(𝜔𝜔)). Then, 

𝑈𝑈 = ��ℏ𝜔𝜔𝑘𝑘 �〈𝑠𝑠𝑘𝑘〉 +
1
2
�

𝑝𝑝𝑘𝑘

=  3�
1
∆𝑘𝑘

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

�ℏ𝜔𝜔𝑘𝑘 �〈𝑠𝑠𝑘𝑘〉 +
1
2
��𝑑𝑑3𝑘𝑘 = 

 

Let`s discuss the interaction of light 
with 𝜆𝜆 = 500 𝑠𝑠𝑎𝑎  with the phonons 
in such a chain. Knowing 𝜆𝜆 one can 
estimate the value of 𝑘𝑘𝑔𝑔𝐶𝐶  for such a 

photon: 𝑘𝑘𝑔𝑔𝐶𝐶 = 2𝜋𝜋
𝜆𝜆

 ~ 1 × 107[𝑎𝑎−1]  

At the zone boundary 𝑘𝑘𝑝𝑝ℎ~ 𝜋𝜋
𝛼𝛼

=

 𝜋𝜋
1𝑛𝑛𝑛𝑛

~109[𝑎𝑎−1], which is 100 times 
larger. So one can imagine the 
relative position of 𝑘𝑘𝑔𝑔𝐶𝐶 on the 𝑘𝑘 axis. 
Thus, due to momenta and energy 
conservation phonons can excite only 
optical phonons. 
 

Here 𝑘𝑘𝑔𝑔𝐶𝐶 is referred to wavevector of a green light and 𝑘𝑘𝑝𝑝ℎ is a wavevector of a 
phonon. 

𝜔𝜔𝑝𝑝ℎ𝑜𝑜𝑡𝑡𝑜𝑜𝑛𝑛 = 𝑐𝑐𝑘𝑘 

𝑘𝑘𝑔𝑔𝐶𝐶 
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=  3�
1
∆𝑘𝑘

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚

ℏ𝜔𝜔𝑘𝑘〈𝑠𝑠𝑘𝑘〉𝑑𝑑3𝑘𝑘 + ⋯  
𝑑𝑑3𝑘𝑘→𝑑𝑑𝜔𝜔
������ = 3 � ℏ𝜔𝜔𝑘𝑘〈𝑠𝑠𝜔𝜔〉 ∙ 𝐷𝐷(𝜔𝜔)𝑑𝑑𝜔𝜔

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

 

 

|𝐷𝐷(𝜔𝜔) =
𝑑𝑑𝑑𝑑
𝑑𝑑𝜔𝜔

=
𝑑𝑑𝑁𝑁
𝑑𝑑𝑘𝑘

𝑑𝑑𝑘𝑘
𝑑𝑑𝜔𝜔

= �
𝑉𝑉𝑘𝑘
∆𝑘𝑘
�
𝑑𝑑𝑘𝑘
𝑑𝑑𝜔𝜔

=
𝑑𝑑
𝑑𝑑𝑘𝑘

(
4
3

(𝜋𝜋𝑘𝑘3) ∙
𝑉𝑉

(2𝜋𝜋)3) ∙
𝑑𝑑𝑘𝑘
𝑑𝑑𝜔𝜔

=
4𝜋𝜋𝑘𝑘2𝑉𝑉
(2𝜋𝜋)3 ∙

𝑑𝑑𝑘𝑘
𝑑𝑑𝜔𝜔

; 

〈𝑠𝑠𝜔𝜔〉 =  1

𝑒𝑒
ℏ𝜔𝜔𝑘𝑘
𝑘𝑘𝐵𝐵𝑄𝑄 − 1

| 

𝑈𝑈 =
12𝜋𝜋𝑉𝑉
(2𝜋𝜋)3 �

ℏ𝜔𝜔𝑘𝑘𝑘𝑘2 ∙
𝑑𝑑𝑘𝑘
𝑑𝑑𝜔𝜔

𝑒𝑒
ℏ𝜔𝜔𝑘𝑘
𝑘𝑘𝐵𝐵𝜕𝜕 − 1

𝑑𝑑𝜔𝜔
𝜔𝜔𝑎𝑎𝑎𝑎𝑥𝑥

𝜔𝜔𝑎𝑎𝑠𝑠𝑠𝑠

. 

 
It was asked to obtain a heat capacity in Debye approximation, which gives 
us dispersion relation: 𝜔𝜔 = 𝑒𝑒𝑠𝑠|𝒌𝒌|, 𝑑𝑑𝑘𝑘

𝑑𝑑𝜔𝜔
→ 1

𝑣𝑣𝑠𝑠
  

𝑈𝑈 =
12𝜋𝜋𝑉𝑉

(2𝜋𝜋𝑒𝑒𝑠𝑠)3 �
ℏ𝜔𝜔3

𝑒𝑒
ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝜕𝜕 − 1

𝑑𝑑𝜔𝜔
𝜔𝜔𝐷𝐷

0
= � 𝑑𝑑𝜔𝜔 → 𝑑𝑑 �

ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑄𝑄

� = 𝑑𝑑𝜒𝜒,𝜒𝜒𝑛𝑛𝑁𝑁𝑚𝑚 =  
ℏ𝜔𝜔𝐷𝐷

𝑘𝑘𝐵𝐵𝑄𝑄
   � = 

=
12𝜋𝜋𝑉𝑉ℏ
(2𝜋𝜋𝑒𝑒𝑠𝑠)3 �

� ℏ𝜔𝜔𝑘𝑘𝐵𝐵𝛵𝛵
�
3
∗ �𝑘𝑘𝐵𝐵𝛵𝛵ℏ �

3

𝑒𝑒
ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝜕𝜕 − 1

∙ (
𝑘𝑘𝐵𝐵𝛵𝛵
ℏ ) ∙ 𝑑𝑑 �

ℏ𝜔𝜔
𝑘𝑘𝐵𝐵𝑄𝑄

�
𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚

=
12𝜋𝜋𝑉𝑉ℏ
(2𝜋𝜋𝑒𝑒𝑠𝑠)3 ∙ �

𝑘𝑘𝐵𝐵𝛵𝛵
ℏ �

4

∙ �
𝜒𝜒3

𝑒𝑒𝜒𝜒 − 1 ∙ 𝑑𝑑
(𝜒𝜒)

𝜒𝜒𝑚𝑚𝑚𝑚𝑚𝑚

0
 

The other condition, that simplifies the model – is the limit of low T: 

𝑘𝑘𝐵𝐵𝛵𝛵 ≪ ℏ𝜔𝜔𝐷𝐷  →
ℏ𝜔𝜔𝐷𝐷

𝑘𝑘𝐵𝐵𝑄𝑄
 → ∞ → �

𝜒𝜒3

𝑒𝑒𝜒𝜒 − 1 ∙ 𝑑𝑑
(𝜒𝜒)

∞

0
=
𝜋𝜋4

15 

Thus, 𝑈𝑈 = 12𝜋𝜋𝑉𝑉ℏ
(2𝜋𝜋𝑣𝑣𝑠𝑠)3

∙ �𝑘𝑘𝐵𝐵𝛵𝛵
ℏ
�
4
∙ 𝜋𝜋

4

15
 and 

𝐶𝐶𝑣𝑣 = (
𝜕𝜕𝑈𝑈
𝜕𝜕𝑄𝑄)𝑣𝑣 =

16𝜋𝜋𝑉𝑉ℏ
5(2𝑒𝑒𝑠𝑠)3 ∙ �

𝑘𝑘𝐵𝐵
ℏ �

4

∙ 𝑄𝑄3 

The final formula without derivation cost (3p). If the derivations are 
reasonable, but answer has small mistakes, answer costs (8p) 
 

2.3.2. (9p) Derive the density of electronic orbitals in this lattice if the 
dispersion relation for the free electron is given as: 

𝐸𝐸 =
ℏ2

2m𝑘𝑘2. 

 
Answer: 
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𝐷𝐷(𝜀𝜀) =  
𝑑𝑑𝑁𝑁
𝑑𝑑𝜀𝜀 =

𝑑𝑑
𝑑𝑑𝜀𝜀 �

2(4𝑉𝑉𝜋𝜋𝑘𝑘3)
3(2𝜋𝜋)3 � =

𝑑𝑑
𝑑𝑑𝜀𝜀 �

8𝑉𝑉𝜋𝜋
3(2𝜋𝜋)3 �

2𝑎𝑎
ℏ2 �

3
2
𝜀𝜀
3
2�

=
𝑉𝑉

2(𝜋𝜋)2 �
2𝑎𝑎
ℏ2 �

3
2
𝜀𝜀
1
2 

 
Derive the expression for the radius of a Fermi surface if the density of 
electron is n. 

𝑁𝑁𝑡𝑡𝑜𝑜𝑡𝑡 = 𝑁𝑁𝑁𝑁 =
�𝑉𝑉𝑘𝑘𝐹𝐹

3�
3(𝜋𝜋)2  →  𝑘𝑘𝐹𝐹 = �3𝜋𝜋2𝑁𝑁 �

𝑁𝑁
𝑉𝑉��

1
3

= (3𝜋𝜋2𝑁𝑁𝑠𝑠)1/3 

The final formulas without derivation cost (2p) each. If the derivations are 
reasonable, but answer has small mistakes, answer costs (8p) 

 
2.4. (5p* bonus) Discuss how the electric conductivity of metals will depend 

on temperature. 
 
 

3. Nearly free electrons, intrinsic and impurity conductivity of 
semiconductors 
 

3.1. (4p) a) Discuss the reason for forming energy gaps at the Brillouin zone 
(BZ) boundary (2p). b) Sketch and explain the difference between the 
metal, semiconductor, and insulator (2p). 

Answer: 

a) Energy gaps results from the interaction of a conduction electron wave 
with the potential of the lattice, formed by ions. When the value of a 
wavevector of the electron approaches the BZ edge, the wavelength 
becomes comparable with the lattice constant and the scattering of the 
electron on the ionic cores becomes more significant, causing the energy 
loses. So for the electrons with such a 𝑘𝑘𝑐𝑐, energies will be significantly 
smaller than the one of a free electron. In the limiting case, when the 
𝑘𝑘𝑐𝑐 = 𝑘𝑘𝐵𝐵𝐵𝐵, the electron is “captured” in a resonator, forming a standing 
wave. 

b) When the electric field is applied, electrons will start to move along the 
field, which means that 𝐸𝐸 field adds a term to a 𝑘𝑘𝑐𝑐.  
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As was discussed in a) and shown on 
a Fig.2, in any real material there will 
be energy gaps, leading to formation 
of allowed energy bands. What 
defines whether the material is 
insulating or conducting under the 
electric field is whether there are any 
electrons, that can move. 

If 𝑘𝑘𝐵𝐵𝐵𝐵, BZ boundary, lays on a green 
line, there are allowed  𝑘𝑘𝑐𝑐  values and 
electron can move, if BZ boundary 
lays on a red line, one can see, that 
there will be no allowed states, so the 
electron can not move. 
It`s common to say, that the crystal is 
metallic if band is from 10 to 90 % 
full, so 𝐸𝐸𝐹𝐹  is still away from the 
boundary, and as insulator, if bands 
are either full or empty. 

 

 
3.2. (6p) Compare the bands folded to the first BZ by 𝒌𝒌1𝐵𝐵𝐵𝐵 = 𝒌𝒌 ± 𝑠𝑠𝑮𝑮, where 

𝑠𝑠 is an integer 

Which band (n = 0, 1, or 2 …) could have the smallest effective mass? 

 

Figure 2 Schematics of the zone folding 

E-field 

∆𝑘𝑘 
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Answer: 
Effective mass is defined as:  

𝑎𝑎∗ = ℏ2 �
𝑑𝑑2𝐸𝐸
𝑑𝑑𝑘𝑘2�

−1

, 

So the smallest effective mass will belong to electrons with largest 

�𝑑𝑑
2𝐸𝐸

𝑑𝑑𝑘𝑘2
�
−1

, means the most narrow band. In our case, 𝑠𝑠 = 3. 
 

3.3. (6p) How to excite carriers in an intrinsic semiconductor? 
Answer: There are several ways, 2 of them were discussed in this course: 

Photoexcitation Thermal excitation 

  
 

We can excite carriers in a semiconductor material by increasing the temperature. 
Doing so we provide electrons with extra energy and due to F-D distribution at finite 
temperature rise the probability of the electrons to occupy some states in a bottom of 
the conduction band. Other way, which is possible even at 𝑄𝑄 = 0 is to excite electrons 
with phonons whose energy is the same or larger than the band gap. 

3.4. (6p) a) Contacting semiconductor, say Si with n- and p-type impurities, 
one can form a p-n junction. Show the processes of band realignment at 
thermal equilibrium. . b) How will the energy bands conductivity change 
at positive and negative biases (positive bias V is applied from the p- to the 
n- side). 

Answer: 
a) See on the next page 
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Before  contact Before thermal equilibrium At equilibrium 
p-type n-type p-type n-type p-type n-type 

 
  

 
The aim of any thermodynamic system is to reach an equilibrium, 

which among other requirements needs equal chemical potentials in 
all parts of the system. 

We suppose that the gap is 
intrinsically the same, but for p-

type the Fermi level lays closer to 
the valence band and for the n-

type – closer to conduction band. 
Both semiconductors are neutral. 

When p- and n-type sc are 
brought to contact, the free 
electrons from n-type start to 
diffuse to p-type, driven by a 
gradient in chemical potential. 
This current is called “diffusive 
current”. When electrons from n-
type reach p-type, they recombine 
with holes, so the Acceptor in p-
type becomes negatively charged 
and the Donor, whose electron 
left n-type, becomes positively 
charged. The internal electric 
field is build up due to local 
charging of contact region, - 
(negative) on p-side and + 
(positive) on n-side. Due to this 
potential difference, minor 
carriers, e- in p-type and h+ in n-
type move towards potential 
lowering, creating a drift current.  
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b) 
Positive bias Unbiased Negative bias 

   
 
 
4. Crystals in a magnetic field  

4.1. (6p) Using Drudes` model, briefly explain the Hall effect in metals. 
Answer: 
Drudes assumptions:  

• Electrons in a metal - ideal gas. 
• The electrons do not experience coulombic interaction with the ions, but do 

collide with a change in direction and velocity. 
• Electrons reach thermal equilibrium by collisions with the ions. Their mean 

kinetic energy is: 𝑛𝑛𝑒𝑒𝑣𝑣𝑇𝑇2

2
= 3

2
𝑘𝑘𝐵𝐵𝑄𝑄 

• The average distance of an electron’s free movement between collisions is 
called the mean free path λ and a time between 2 collisions is τ – relaxation 
time. 
From Drude model, current density: 𝒋𝒋 =  −𝑒𝑒𝑠𝑠𝒗𝒗. 

 
Hall effect: 
 
The Hall effect occurs when a current flows through a 
conductor under a magnetic field. As a result of the 
Lorenz force, negative charges accumulate on one side 
of the conductor and positive (if they are) on the other 

side, so the voltage perpendicular to the channel appears, we call it Hall voltage. 
Lorenz force: 𝑭𝑭 = 𝑞𝑞(𝑬𝑬 + 𝒗𝒗 × 𝑩𝑩), we suppose the steady state, means, 𝐹𝐹 = 0, then  

−𝑞𝑞𝑬𝑬 = 𝒗𝒗 × 𝑩𝑩.                      (1)  
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Let us simplify the problem letting the current pass by x axis, means electrons (𝑞𝑞 = −𝑒𝑒) 
have the largest velocity in this direction, −𝑒𝑒𝑚𝑚 and B to have only z component, so 𝑩𝑩 =
(0,0,𝐵𝐵𝑧𝑧),  so (1) becomes: 

𝐸𝐸𝑦𝑦 =  −𝑒𝑒𝑚𝑚𝐵𝐵𝑧𝑧 , then we use 𝐸𝐸𝑦𝑦 = −  
𝑉𝑉𝐻𝐻
𝑤𝑤

 to get 
 𝑉𝑉𝐻𝐻 = 𝑤𝑤𝑒𝑒𝑚𝑚𝐵𝐵𝑧𝑧 

We express 𝑒𝑒𝑚𝑚 from Drudes` expression for current density: 𝑒𝑒𝑚𝑚 = 𝑗𝑗𝑥𝑥
𝑐𝑐𝑛𝑛

= 𝐼𝐼𝑥𝑥
𝑐𝑐𝑛𝑛𝑒𝑒

= 𝐼𝐼𝑥𝑥
𝑐𝑐𝑛𝑛𝑑𝑑𝑒𝑒

, 

so 𝑉𝑉𝐻𝐻 = 𝐼𝐼𝑚𝑚𝐵𝐵𝑧𝑧
𝑒𝑒𝑠𝑠𝑑𝑑  . 

 
 

4.2. (4p) a) Which physical parameter defines para- or diamagnetic? (1p)  
Answer: 
This parameter is a magnetic permeability (μ) and it is the measure of 
magnetization of a material in response to an applied magnetic field. 
b) How do those two types of materials behave in a magnetic field? (3p) 
Answer:  
Diamagnetic materials are repelled by a magnetic field, as an applied magnetic 
field creates an induced magnetic field in opposite direction, causing a 
repulsive force. Diamagnetism occurs in all materials but in diamagnets this is 
the only magnetic effect. In paramagnets and ferromagnets, the weak 
diamagnetic force is overcome by the attractive force of magnetic dipoles in 
the material, so paramagnetic and ferromagnetic materials are attracted by a 
magnetic field. 

• Diamagnets are materials with a magnetic permeability less than 
magnetic permeability of free space μ0. 

• Paramagnets are materials with a magnetic permeability larger than 
magnetic permeability of free space μ0. 
 

4.3. (6p) Some materials demonstrate a superconducting transition at a critical 
temperature. Describe the difference in magnetization between a 

superconductor and a perfect 
conductor under an external 
magnetic field. 
Answer: the Meissner effect:  
The perfect conductor will prevent any 
change in magnetic flux by EM induction, 
whereas SC expels external b-field with 
generated surface currents, so under 
Tc/Bc, there will be no magnetization in a 
SC. 
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4.4. (10p) For the system shown on right, 

write down the expression for the 
magnetic moment of a system subjected 
to a magnetic field B. 
 
Answer: Such a triplet state has 2 
electrons in the same orientation. When 
such a system is subjected to magnetic 
field, there will be 3 ways of how those 
electrons may respond: both spins aligned 
with B, both electrons  aligned against B, 
and one spin up, one spin down. First 
possibility lowers the energy, second raises 
and in the third option there will be no 
response to a magnetic field. So the electronic system under the magnetic 
field is transformed: 

|𝛥𝛥𝜀𝜀| = 𝜇𝜇𝐵𝐵  is an energy term, gained in a 
magnetic field. 𝜇𝜇 = −𝑔𝑔𝑎𝑎𝑠𝑠𝜇𝜇𝐵𝐵𝐵𝐵  So the 
relative occupacies of this levels will be: 

𝑒𝑒−
(𝐷𝐷+𝜇𝜇𝐵𝐵)
𝑘𝑘𝛣𝛣𝛵𝛵

  for spins alligned against 

𝑒𝑒−
(𝐷𝐷−𝜇𝜇𝐵𝐵)
𝑘𝑘𝛣𝛣𝛵𝛵

 for spins aligned with B 

𝑒𝑒−
𝐷𝐷
𝑘𝑘𝛣𝛣𝛵𝛵

 for spin up − down and  
1 for ground s state. 

 So, according to (4) given in FORMULA 
LIST, one can get an expression: 

 

〈𝜇𝜇〉 =
−𝜇𝜇𝑒𝑒−(𝐷𝐷+𝜇𝜇𝐵𝐵) + 𝜇𝜇𝑒𝑒−(𝐷𝐷−𝜇𝜇𝐵𝐵)

1 + 𝑒𝑒−
𝐷𝐷
𝑘𝑘𝛣𝛣𝛵𝛵

 + 𝑒𝑒−
(𝐷𝐷+𝜇𝜇𝐵𝐵)
𝑘𝑘𝛣𝛣𝛵𝛵

 + 𝑒𝑒−
(𝐷𝐷−𝜇𝜇𝐵𝐵)
𝑘𝑘𝛣𝛣𝛵𝛵

 
. 

 
  

 
 

 
---------------------------------- End of Questions ---------------------------------- 

Figure 3. Triplet state system, 
for example, the ground state of 

O2. 
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FORMULA LIST 
 
 
The density of states is defined by: 

𝐷𝐷(𝜔𝜔) =
𝑑𝑑𝑑𝑑
𝑑𝑑𝜔𝜔  .                                                    (1) 

 
Fermi-Dirac distribution: 

𝑓𝑓(𝜀𝜀)𝐹𝐹𝐷𝐷 =  
1

𝑒𝑒
𝜀𝜀−𝜇𝜇
𝑘𝑘𝐵𝐵𝜕𝜕 + 1

 .                                            (2) 

Bose-Einstein distribution: 

𝑓𝑓(𝜀𝜀)𝐵𝐵𝐸𝐸 =  
1

𝑒𝑒
𝜀𝜀−𝜇𝜇
𝑘𝑘𝐵𝐵𝜕𝜕 − 1

 .                                            (3) 

Quantum statistical average: 

< 𝐴𝐴 > =  
∑ 𝐴𝐴𝑖𝑖𝑒𝑒

− 𝐸𝐸𝑚𝑚
𝑘𝑘𝐵𝐵𝜕𝜕𝑖𝑖

∑ 𝑒𝑒−
𝐸𝐸𝑚𝑚
𝑘𝑘𝐵𝐵𝜕𝜕𝑖𝑖

 .                                          (4) 

Taylor series of exponential: 

𝑒𝑒𝑚𝑚 = 1 +
𝑥𝑥
1! +

𝑥𝑥2

2! +
𝑥𝑥3

3! + ⋯ , −∞ < 𝑥𝑥 < ∞ .               (5) 

Exponential integral:  

� 𝑥𝑥𝑛𝑛𝑒𝑒−𝑁𝑁𝑚𝑚𝑑𝑑𝑥𝑥 =  
𝑠𝑠!
𝑎𝑎𝑛𝑛+1  .

∞

0
                                           (6) 

�
𝑥𝑥3

𝑒𝑒𝑚𝑚 − 1𝑑𝑑𝑥𝑥 =  
𝜋𝜋4

15 .
∞

0
                                               (7) 


